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ABSTRACT 

The United States military carefully plans and justifies its materiel 
procurements.  These decisions have a profound, long-term impact on our 
ability to defend our nation, and to fight and win our nation’s wars.  
Annual U.S. materiel investment is now larger than that of the rest of the 
world combined, and attracts keen attention from political leaders and 
government contractors.  Procurement plans are complicated by their 
influence on domestic technology and production abilities, conflicted 
objectives, concerns regarding interoperability and maintainability of the 
materiel, and the sheer scale of the endeavor.  Mathematical optimization 
models have long played a key role in unraveling the complexities of 
capital planning, and the military has lead the development and use of 
such models.  We survey the history of optimizing civilian and military 
capital plans and then present prototypic models exhibiting features that 
render these models useful for real-world decision support. 
 

Keywords:  Resource planning, capital planning, capital budgeting, 
military planning, integer programming, model tractability, the art  
of modeling. 
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1. What’s so Complicated about Capital Planning? 
Procurement of materiel has been a concern of the American military since the 

Revolution.  Most early procurement requests amounted to not much more than a  

field officer’s handwritten letter for “what we must have to accomplish this task.”  With 

the exception of unique military demands for critical goods such as saltpeter, most supply 

requests were simple—of the sort civilians would buy—and were for modest quantities.  

Debate centered on how to pay for what was required, rather than whether the need was 

real.  (To gain an appreciation of the predominant role military procurement played in 

Revolutionary times, we recommend the writings, annotated diaries, and biographies of 

those who debated and decided these issues, e.g., McCullough’s John Adams [2001].) 

Planning U.S. military procurement remained relatively short-term, reasonably 

simple, and motivated by apparent need—but driven by immediate affordability—until 

after World War II.  In 1948, the Hoover Commission required that the military set forth 

its defense goals and the means by which it would achieve these.  In the early 1960s, 

Secretary of Defense Robert McNamara tried to mitigate the myopia of a single-year 

budget plan and accurately represent defense systems too complex to be procured and 

fielded in a single year.  He adopted a five-year budget requiring analytical justification.  

This foundation underlies our military planning today:  each branch of the military forms 

a strategy, categorizes this into “mission areas,” and translates these into requirements for 

personnel and materiel.  For a detailed history of military funding and its consequences, 

see Chambers [1999]. 

Despite early simplicity in justifying military expenditures, U.S. military capital 

planning has always involved large amounts of resources from many parts of the country, 

extensive research effort and technological development, significant amounts of money, 

and the attention of political leaders.  In 1794, the USS Constitution (Figure 1) and her 

five sister frigates—costing $800,000 (1794 dollars, or about $2.9 billion 2003 dollars 

[Field 1999], or more than $1,000 2003 dollars per capita)—were approved for 

construction using the newest technology and resources from all the colonies, on the 

condition that the ships be built exactly as proposed in six different American 

constituencies.  The B1B Lancer, a $300 million bomber with an unprecedented 
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combination of payload, speed, and range, entered service in 1986 after assembly in 

Palmdale, California, from components originating in all 50 states. 

 

 

Figure 1:  The USS Constitution incorporated innovative naval architecture and the latest 
armament technology; the highest levels of American government planned and approved its 
construction in 1794, and it required a huge mobilization of colonial resources. 

Newport News Shipbuilding, the sole shipyard in the United States capable of building  
nuclear-powered aircraft carriers, builds the USS Ronald Reagan (CVN76).  The cost for the 
Reagan and her aircraft is about $10 billion 2004 dollars. 

 

Modern procurement planning may involve programs that require many years to 

develop and complete.  Requirements and costs may change during program 

development.  For example, the Army had to reprogram “Star Wars” research in 1985, 

responding to a $100 million cost overrun [Reuters 1985].  About six years later, the 

Navy cancelled development of an attack jet after unanticipated program costs increased 

by billions, drawing criticism of long-term Navy acquisition planning [Pasztor 1990, 

1991].  In 1999, the Navy suffered a $100 million cost overrun in fielding the  

Joint Strike Fighter (Figure 2) [Ricks 1999]. 
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Figure 2:  The Lockheed Martin X35 Joint Strike Fighter has a planned unit cost of about  
$40 million, with production ramping up for 500 planes over fiscal years 2005-2010, deliveries 
starting in 2008, initial operational capability in 2011, and a total planned production campaign of 
3,000 aircraft.  The X35 will replace the U.S. Air Force’s A-10 and F-16, the  
U.S. Marine Corps’ AV-8B and F/A-18, and the U.S. Navy’s F/A-18.  The three services’  
long-term capital plans must reflect the influence of this transition across all these aircraft and 
their weapon systems. 
 

Because capital planning is an important, complex, and expensive problem, it 

invites careful analysis.  Since the introduction of mathematical programming after 

World War II, the military, as well as the private sector, has used it to solve capital 

planning problems, and the resulting decisions have committed trillions of dollars.  We 

distill from an extensive literature some important contributions to optimizing capital 

budgets, distinguishing between the military and the private sector.  We present 

prototypic models exhibiting key features that make these models useful for real-world 

decision support, and discuss what we frequently need to do to enhance the fidelity and 

responsiveness of these models.  This material does not appear in any single reference, 

and some of it has never appeared at all in the open literature. 

 

2. Military Capital Planning Versus Civilian Capital Budgeting 
2.1 Optimizing Military Capital Planning 

Some of the earliest papers in the journals of the new discipline of operations 

research address military capital planning.  Bailey [1953] presents what we would today 
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call a systems engineering analysis of the costs and benefits of alternate bomber designs.  

Stanley, Honig, and Gainen [1954], in their timeless paper, offer an insightful analysis of 

the real-world complexities of bid evaluation to determine the “true minimum cost to the 

Government,” and include optimization modeling advice.  Marschak and Mickey [1954] 

show how to select a weapon system based on its fixed cost in order to maximize 

expected military utility using a convex nonlinear program, and invoke the then-new 

conditions of Kuhn and Tucker [1950] to characterize optimal solutions. 

Buffum [1978] addresses a ubiquitous military problem: given a fixed budget and 

set of binary alternatives, each with a cost and a priority, how does one choose the best 

portfolio?  In this case, the alternatives are Navy research test flight packages, and costs 

include those of several types of limited resources, e.g., manpower, hangar space, and 

flight hours.  Buffum employs linear integer programming to prove, with an objective 

bound on solution quality, that he has an optimal portfolio.  Pfarrer [2000] studies a 

problem similar to Buffum’s:  an optimal shopping list for special operations weapons.  

He solves the problem manually, and then offers both a fast heuristic and a linear integer 

program for certifying performance of the heuristic. 

Taylor, Keown, and Greenwood [1983] analyze military aircraft procurement, 

seeking to minimize violation of respective elastic constraints on peacetime and wartime 

objectives, conformation of aircraft components, combat ability, cost limits, payload and 

range, maintenance, accidental losses, and flexibility (interoperability) with other  

allied systems. 

Brown, Clemence, Teufert, and Wood [1991] develop a large-scale linear integer 

model for modernizing the Army’s helicopter fleet over a multidecade planning horizon.  

The model determines when and how many of each type of potential or existing aircraft 

to manufacture new, to extend the life of, to improve, and/or to retire.  The objective 

accounts for costs of procurement, operations, and maintenance, subject to limits on 

average fleet performance and age, expenditures, production and manufacturing, and 

upgrading aircraft.  Their model offers a range of alternate production campaigns for each 

type of helicopter, start date, stop date, and production rate, thus capturing volume 

discounts and learning effects with new technology.  Loerch, Koury, and Maxwell [1999] 

employ an optimization model to recommend a mix of Army weapon systems that 
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maximizes force effectiveness, subject to budget, production, force structure, and logical 

constraints on allowable mixes of systems.  The Army used the results in both of  

these cases. 

Brown, Coulter, and Washburn [1994] describe a nonlinear optimization model 

used for more than 20 years to recommend Air Force purchases of conventional gravity 

bombs.  The single-period model assigns sorties in a war theater subject to weapons 

availability, aircraft sortie rates and effectiveness, target numbers, vulnerabilities, values, 

and weather states.  The myopic model is used over a many-period planning horizon with 

transitions between periods allowing for target regeneration, reinforcements, war phase 

changes, etc.  Yost [1996] addresses the same problem and contributes an omniscient 

linear model of the entire planning horizon of the war theater, with refinements such as a 

conditional probability model of the weather state at the target given the weather forecast 

at takeoff.  These real-world models have been used for a long time. 

Newman et al. [2000] and Brown, Dell, Holtz, and Newman [2003] describe a 

linear integer model the Air Force has used to select and schedule investments of  

space-based assets over a 25-year horizon.  The model recommends a mix of research 

and development projects, current systems, and launches that minimizes shortfalls in task 

performance, while adhering to constraints on budget, launcher demand,  

launcher availability, and logic governing the precedence and interdependence of systems 

operating in any given epoch. 

Field [1999] presents a linear integer model to plan Navy force structure over a 

25-year horizon, scheduling production and retirement of various types of ships, while 

adhering to constraints on spending, keeping shipyard workloads stable, and maintaining 

required force levels.  Baran [2000] enhances Field’s model with additional ship classes, 

aircraft types, and funding categories.  Garcia [2001] adds even more detail, accounting 

for aircraft age, and age-dependent operation and maintenance costs. 

Bruggeman [2003] introduces a decision support system for suggesting 

procurement plans for about 40 categories of conventional Navy ordnance over an  

eight-year planning horizon.  His goal is to find budget-feasible procurement plans that 

take advantage of quantity discounts, keep key production lines active, and build 

inventories synchronously toward a military requirement.  His purpose-built heuristic 
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produces solutions very quickly for display in a graphical user interface, but an integer 

linear program is used for important cases. 

Baker, Morton, Williams, and Rosenthal [2002] develop a model for the  

Air Force Studies and Analyses Agency to show how an entire Air Force strategic airlift 

can optimally incorporate cargo aircraft, refueling aircraft, airport availability,  

ground handling equipment, etc.  In particular, they show how to evaluate the marginal 

contribution of new cargo aircraft.  The Agency used this model as a decision support 

tool, inter alia, to help make fleet-mix decisions, and to suggest the best use of aircraft 

that can both act as aerial refuelers and haul cargo. 

Some of these military capital-planning models express how the assets would be 

used, rather than how they should be procured.  Brown, Coulter, and Washburn [1994] do 

not address capital planning at all; they don't even have a budget constraint.  However, 

they do show how any particular stockpile of conventional bombs would be used with 

available platforms to fight an emergent theater war.  Their model is as much normative 

as prescriptive, and the key is melding data from a myriad of sources into a unified model 

of a complex air war.  The result is used to justify munitions capital plans.  Similarly, 

Baker, Morton, Williams, and Rosenthal [2002] have no budget constraint or costs, but 

the model they describe can be used to, for instance, determine what effect introducing a 

new cargo aircraft has on the ability to airlift materiel to various remote locales.  The 

model is complicated, but the result is a simple quantitative assessment of return on such 

an investment. 

2.2 Optimizing Civilian Capital Budgets 

While there is extensive literature on optimizing civilian capital budgets, we find 

few reports of actual applications, real-world solutions, and corresponding insights.  We 

highlight the applications we do find within our select history of capital budgeting 

optimization models. 

Reports of optimizing capital budgets appear as early as the 1950s.   

Gunther [1955] presents, in the form of an amusing story to disguise the client, an 

industrial capital budgeting linear program with six continuous variables.  A few early 

papers illustrate how interest rates affect spending.  For example, Lorie and  

Savage [1955] seek to maximize company net worth.  Their manual methods yield  
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near-optimal solutions for most of their small, numerical examples spanning multiple 

time periods and admitting dependencies between candidate investments.  Kaplan [1966] 

suggests a generalized Lagrange multiplier method to solve the problem posed by  

Lorie and Savage.  Kaplan notes that his method can produce many solutions, rather than 

just one, by violating a budget constraint that may not need to be strictly observed. 

A well-written survey by Weingartner [1966] presents a series of multiple time 

period capital budgeting models.  His deterministic integer and nonlinear models capture 

dependencies among investments, and he suggests probabilistic models for addressing 

uncertainty.  His review includes solution methods fashionable at the time, such as 

dynamic programming and Lagrangian relaxation, and he offers some computer code. 

Bernhard [1969] gives a review of capital budgeting literature by presenting a 

general prototypic formulation.  He analyzes his linear model with Karush-Kuhn-Tucker 

conditions, and then demonstrates how published models are a special case of his 

formulation.  He suggests, but does not heartily recommend, that chance constraints and 

expected values can be used to express uncertainty.  Weingartner [1977] reviews 

literature on “capital rationing” models, and criticizes published advice on determining 

discount rates and specifying an objective function. 

Integer programs of useful size remained beyond the capabilities of commercial 

software for some time, but linear programs were solvable.  Baumol and Quandt [1965] 

examine a simple capital budgeting model that maximizes net discounted cash flow from 

project construction subject to a simple budget constraint for each time period.  They then 

generalize by allowing funds to carry over from one period to the next, and suggest a way 

to use the budget constraint dual from a slightly modified model with an objective of 

maximizing utility from consumption (rather than maximizing the net discounted cash 

flow from investments) to obtain a reasonable discount rate.  Carleton [1969] reconciles 

Weingartner with Baumol and Quandt by suggesting a restatement of the objective to 

express “macro” decisions of a firm (e.g., return on stockholder equity), rather than the 

“micro” consequences of these decisions (e.g., investment and return money streams).  

Bhaskar [1974] extends Weingartner to account for borrowing and lending.   

Lusztig and Schwab [1968] apply sensitivity analysis to assess the discount rate of the 

cost of investment candidates that would make them attractive in an optimal solution.  
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Their multiple-time period models exhibit time-dependent costs between candidates, but 

not dependencies between them.  Bradley and Frey [1978] analyze a multiple-time period 

linear program with time-varying costs by investment type to illustrate how the dual 

multipliers of budget constraints can be used to deduce favorable discount rates.   

Ashton and Atkins [1979] claim that rules of thumb solve a simple multiple-period linear 

program fairly well, with profit contributions varying by investment candidate and year, 

subject to cash flow constraints and simple upper bounds on the amount of investment in 

each candidate.  They offer a 30-candidate, 26-year example. 

Later, integer programs became more tractable, both via improved enumeration 

software and thanks to heuristics that provide relatively good solutions to special classes 

of integer programs.  Senju and Toyoda [1968], and Toyoda [1975] address one such 

class, the binary knapsack problem with multiple constraints (an optimal portfolio 

selection problem).  Each paper introduces an “effective gradient measure” to gauge the 

incremental effect of each investment (or divestment) based on cost and consumption of 

limited resources.  The former method would today be called a greedy, myopic, 

feasibility-seeking deletion heuristic, and the latter an addition heuristic.  Each paper 

demonstrates by example that a near-optimal solution can be quickly achieved for a 

relatively large problem (at that time), with a thousand binary alternatives.   

Dobson [1982] develops bounds on solution quality for these heuristics, and, thereby, 

conditions on parameters for which these heuristics are dependable or not. 

Unger [1970] formulates a model similar to Baumol and Quandt [1965] and 

suggests solving it with Benders Decomposition.  He also suggests implicit enumeration, 

in lieu of linear programming-based enumeration, to solve the integer linear master 

problems. Keown and Martin [1976] present a single-period linear integer model to select 

a set of investments for a hospital.  They formulate a goal program to motivate,  

e.g., spending of earmarked funds, staying within a restricted budget, and purchasing a 

required subset of systems.  A small example illustrates their model.  Rychel [1977] 

presents a multiple-time period linear integer program to maximize net worth for  

Cities Service Company, while accounting for many realistic side constraints such as 

short- and long-term borrowing, and total expenditures.  Costs vary by candidate 

investment, year, and budget level.  Fox, Baker, and Bryant [1984] propose the 
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incorporation of research and development projects into a Lorie and Savage-style capital 

budgeting model.  They argue that these types of projects exhibit interdependencies, and 

develop a formulation and solution technique for such a model.  Bradley [1986] 

maximizes short- and long-term net present value for General Telephone and  

Electronics Corporation subject to financial, resource, and service constraints.  His linear 

integer program has time-varying costs by investment type, and considers dependencies 

among candidate investments.  He shows how scrupulous model formulation, including 

elastic (linear) goal constraints, enables optimal solution of models with thousands of 

constraints and binary alternatives. 

Evans and Fairbairn [1989] present a linear integer program to suggest a portfolio 

of NASA space missions that best meets humanistic, intellectual, and utilitarian goals, 

while adhering to constraints on mission compatibility and budget.  These authors present 

an example with 24 candidate missions, and one or two alternate start years each.   

Kumar and Lu [1991] present a case study to plan inputs and outputs for a fertilizer plant 

that maximize net present value as a function of market type, subject to constraints on 

budget, supply and demand, capacity, and dependencies between outputs.  Parametric 

analysis of a small five-period model examines the influence of changes in costs  

and demands. 

Although many of these models are motivated by real-world examples, only 

Rychel [1977] and Bradley [1986] report actual experience and the insights that accrue 

from such.  That is likely why these two papers exhibit such a wealth of insight. 

Bradley's work is in a quintette of papers including Edwards [1986],  

Geoffrion [1986], Glomski [1986], and Sweet [1986] that provides a rare, high-level 

glimpse into the rationale, design, implementation, documentation, and use of a complete 

portfolio optimization decision support system to guide about $3 billion in nationwide 

telecommunication hardware investments.  Distinctive here is the use (attributed by 

Bradley [2003] to Geoffrion) of operating statements—funds flow and balance sheet—to 

communicate among executives, spreadsheets, and optimization models.  The 

spreadsheets offer descriptive, as well as prescriptive, optimized views of the five-year 

planning horizon.  These statements, once calibrated with the rest of corporate operations, 

convey constraints on internally-raised funds, external borrowing, and ultimately return 
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per share on common stock.  Thus, Bradley’s optimization model simultaneously 

optimizes capital portfolio outlays and the mechanics of their financing in capital 

markets.  (We are grateful to Bradley for sharing with us his complete files on  

this project.) 

There is also a body of academic literature focused more on solution techniques 

than on solutions of specific capital budgeting problems.  In an insightful paper,  

Everett [1963] demonstrates how Lagrangian relaxation can be applied to (integer) 

knapsack-like problems in which the goal is to maximize an arbitrary payoff function 

subject to a set of resource constraints.  While the procedure is not guaranteed to provide 

an optimal solution for every scenario, he shows that optimal solutions often result, and 

provides insights as to why the procedure sometimes fails to converge and how this 

shortcoming can be rectified.  Broyles [1976] shows how to algebraically remove all 

continuous slack fund variables from Weingartner’s model to produce a smaller,  

pure-integer model that might be solved manually or with then-fashionable implicit 

enumeration.  Today, this reduction is an automatic presolve feature “remove a singleton 

column from its equation” of contemporary solvers.  Nonetheless, we like the 

straightforward presentation style. 

Mamer and Shogan [1987] devise a custom heuristic for choosing which parts to 

include in a repair kit, such that the part cost is offset by the revenue generated by 

performing repairs.  Their single-period model exhibits costs by part and revenues by 

repair, but does not allow dependencies between parts and/or repairs.  The authors 

propose problems with hundreds of alternatives and thousands of constraints, and adopt 

Lagrangian relaxation and a greedy heuristic to suggest feasible integer solutions.  

Karabakal, Lohmann, and Bean [1994] propose a linear integer equipment-replacement 

model to determine the types and times of equipment purchases and retirements to 

maximize net present value subject to constraints on budget and interoperability.  The 

authors present an example with about a thousand binary alternatives and a  

hundred constraints, devise problem reductions to isolate easy Lagrangian subproblems, 

and suggest a multiplier adjustment heuristic.  Lofti, Sarkis, and Semple [1998] present a 

model to determine when to invest in manufacturing systems and how to allocate the 

corresponding amount of production among different part types to maximize company 
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net present value, which depends on the part and system combination employed, subject 

to constraints on costs and time interdependencies for operating each system.  The 

authors use variable substitution to obtain an optimal integer solution with their  

linear programming relaxation, and demonstrate their method on a relatively small 

problem.  Kimms [2001] studies project scheduling, but embellishes conventional activity 

precedence constraints and activity costs with period-by-period cost constraints.  His 

model determines which projects to select, and for each selected project the start date of 

each activity.  His objective is to maximize on-hand cash at the end of the horizon. 

Kimms applies Benders Decomposition to decouple the monolithic problem into 

project subproblems, while preserving a master schedule of period-by-period cash 

accounting.  His test problems exhibit about 50 time periods, and have a maximum of  

50 projects and 60 activities per project.  His objective converges to optimality in a 

matter of seconds for some instances, while large decomposition gaps (on the order of 

50%) persist for others. 

Finally, several authors have formally incorporated uncertainty, e.g., Keown and 

Taylor [1980] suggest new equipment purchases for a textile manufacturer facing 

uncertain demand.  They employ chance constraints for a single time period, while 

expressing capacity, demand, supporting equipment, and profit goals.  They offer a  

20-candidate example.  Meier, Christofides, and Salkin [2001] seek to maximize the 

time-varying value of a portfolio of investment options.  Proposing a linear integer 

program with a budget constraint and dependencies between candidate investments, they 

estimate portfolio value uncertainty from samples of real options and offer not only a 

heuristic solution, but also a heuristic bound on solution quality and a three-period 

example to illustrate. 

 

2.3 How do Military and Civilian Capital Planning Differ? 

Dantzig’s [1963, Chapter 2] recollections clarify why the military rushed the 

development of linear programming just after World War II:  “A nation’s military 

establishment, in wartime or in peace, is a complex of economic and military activities 

requiring almost unbelievably careful coordination in the implementation of plans 
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produced in its many departments.”  Papers edited by Koopmans [1951] provide 

additional history on the early use of linear programming by the U.S. military. 

Military investments involve enormous amounts of money, enough that 

economists since the 1960s have developed a defense economics literature  

(e.g., Sandler and Hartley [1995]).  Brown, Clemence, Teufert, and Wood [1991] advised 

decisions committing between $35 and $100 billion over a 25-year planning horizon.  

Brown, Coulter and Washburn [1994] report how capital expenditures of $2 to $4 billion 

per year have been planned for more than 20 years.  Newman et al. [2000] and  

Brown, Dell, Holtz, and Newman [2003] model investments of more than $300 billion 

over a 25-year planning horizon.  Salmeron, Brown, Dell, and Rowe [2002] advise 

capital outlays of about a trillion dollars over a 25-year planning horizon.  The sheer scale 

of these military programs dominates private-sector, big-ticket investments (e.g., the  

$3 billion reported by Bradley [2003], or the $5 billion Iridium satellite constellation). 

Government investments are encumbered by so much specific congressional 

legislation of how and where money must be spent that political insulation of capital 

investments is a paramount concern.  Since the mid-1950s, defense investments have 

been justified by detailed intermediate-term statements of the required capability, and the 

relation between this and the requested expenditures:  The Program Objective 

Memorandum (POM) is a six-year plan beyond the current fiscal year that essentially 

fixes spending in the early years and merely announces intent for later-year expenditures.  

For purposes of major capital outlays, this plan is only revised once per fiscal year, 

promulgated up through the Department of Defense (DoD) chain of command and then 

submitted from the executive branch to Congress and debated.  Private investments are 

not customarily shackled this way. 

Congressional funding of DoD programs is subject to continuous review and 

revision by legislators. 

 
Article 1, section 9, of the U.S. Constitution stipulates that “No Money 
shall be drawn from the Treasury, but in Consequence of 
Appropriations made by Law.”  This appropriation power, in 
conjunction with the more specific constitutional charges to “raise and 
support Armies” and “provide and maintain a Navy,” gives Congress 
tremendous say over the budgets, structures, and duties of the armed 
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forces.  The Constitution forbids Congress from making defense 
appropriations more than two years in advance, and by custom 
appropriation laws are passed annually.  In addition to using the 
appropriations power to determine how much the armed services may 
spend, Congress can use the appropriation power to bar the armed 
services from undertaking specified programs or operations.  
[Chambers 1999, p. 179] 

 
To ensure that this legislation is adhered to, military investments are subject to an 

astonishing array of audits and investigations, arising from an alphabet soup of agencies:  

the Government Accounting Office (GAO), Congressional Budget Office (CBO),  

House and Senate Appropriations Committees (HAC and SAC), and a galaxy of  

nongovernmental watchdog agencies leveraging the Freedom of Information Act.  

Optimization has a distinguishing advantage under audit: you can state your assumptions, 

publish your data, and make strong assertions about the quality of the solutions you 

report.  On one visit by HAC analysts (with military backgrounds) to an author of this 

paper, after going over a multitude of data sources, details, and modeling assumptions, 

the key question arose:  “how can we be sure this answer is optimal?”  Brown recalls:  

“Oh, be still my heart!”  Karush-Kuhn-Tucker conditions were offered for consumption, 

and there were no follow-on questions at all. 

Military capital planning models must not only account for the way planning is 

overseen and regulated, but must also accommodate concerns not predominant in the 

private sector.  For example, defense programs have high research, development, test and 

evaluation costs, usually starting many years before a system is fielded, and sometimes 

greatly exceeding the per-unit production cost of the resulting system.  Few private sector 

companies endure costs of such magnitude or duration. 

Defense investments not only buy capital equipment, they nurture  

military-essential domestic production capability and technology.  For example, the 

Army manages conventional ammunition production and is the sole domestic consumer 

of certain energetic chemicals and large-caliber gun barrels.  The Army must sustain this 

key research and technology production base, while economically producing peacetime 

research and training rounds, and ensuring that the U.S. always has the reserve capacity 

to replenish wartime ammunition consumption quickly [Bayram 2002].  The U.S. Navy is 

the sole domestic consumer of high-pressure steam nuclear reactors.  Defense 

13 



investments may enforce monopoly (e.g., government-owned, government-operated 

facilities) and/or monopsony (e.g., the purchase of restricted military hardware). 

There are other differences between the civilian and military sectors that influence 

the way in which models are constructed, received, and, correspondingly, used.   

Private-sector companies must book investments according to general accounting 

standards and cannot deduct the entire investment as an expense offsetting current 

income, but must rather depreciate the investment over time.  Because private-sector 

companies typically raise capital by borrowing, the availability, cost, and restrictive terms 

of these loans have an effect on investment decisions.  The private sector justifies 

investments with “return on investment” (ROI) analysis, or “payback time”; such 

outcomes are conventionally expressed as “return on owner equity,” and this is an 

aggregate function of, e.g., the present value of funds invested over time, funds returned 

from investments over time, the costs and encumbrances incurred by borrowing,  

tax exposure, and all financial interactions between discretionary investments and other 

operations.  Many of the most esoteric mathematical arguments in the literature derive 

from these paradoxically-complex details in the private sector.  By contrast, government 

capital outlays are viewed as immediate expense items from the current fiscal year 

budget.  Although the government does borrow money and publishes a current cost of 

capital, there is no direct connection between the timing and cost of such borrowing and 

the use of the borrowed funds.  Government budgets are approved and strictly 

administered by fiscal year.  Private-sector bookkeeping may fall into fiscal years for tax 

and disclosure purposes, but this does not significantly restrict the timing or payment for 

capital purchases.  DoD agencies subdivide fiscal year budgets into strict spending 

categories (e.g., payroll versus hardware accounts).  Private sector companies do not. 

Our military is a meritocracy.  Senior military officers have risen through the 

ranks via both successful operational and administrative performance.  There are no 

shortcuts: the military has no concept of assigning a fresh MBA directly to a field officer 

billet.  The military requires its executives to have first-hand, lower-level experience 

before deciding policy from a higher level.  There are few such apparent requirements in 

the private sector, and this distinction leads to differences in the way solutions to capital 

planning models are viewed, presented, and accepted. 
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Our military is a technocracy.  Modern militaries value technology as a key 

component of force.  The ranks of uniformed and civilian military decision makers are 

rife with degreed scientists and engineers, many with postgraduate education and ample 

foundation experience applying their academic training to exigent military topics.  These 

decision makers and their support analysts often have first-hand experience with the types 

of weapons systems and the issues at hand. 

The cost of failure is inestimable.  The military has learned that there is no 

substitute for scrupulous planning and the insights that accrue in the abstract, rather than 

in the reality of battle. 

 

3. Optimization Models 
We present prototypic models for optimizing military capital planning that 

illustrate some transcendent features.  These models prescribe which weapon systems 

should be procured, when they should be procured, and how many should be procured.  

We restrict our discussion to deterministic models, even though many future details are 

uncertain.  However, we make allowances for uncertainties through the usual 

deterministic equivalent mechanisms of safety stocks, factors that emphasize the 

importance of near-term obligations, and the application of a range of alternate future 

scenarios (e.g., plans for various theater wars) to assess solution robustness. 

 

3.1 Portfolio Selection, aka the Knapsack Model 

One of the simplest optimization models for military capital budgeting is a binary 

knapsack.  Given a fixed budget and a set of binary acquisition options, where each 

option has a value and a cost associated with the procurement of one or more weapon 

systems, we seek the set of options that has the maximum total value at a portfolio cost 

no greater than our budget. 

This model is a linear integer program with a linear objective and a single linear 

inequality constraint with nonnegative coefficients.  The binary selection requirement 

makes this problem potentially impossible to solve exactly in reasonable time, yet we 

encounter and solve shopping list problems like this every day. 
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For this simple model, we make standard linear programming assumptions: 

additive objective values and additive costs, constant returns to scale, separable options, 

and deterministic data.  In terms of real-world acquisitions, this means that the total 

portfolio value is just the sum of its component values, and there is no synergism among 

selected options.  There are no returns to scale, volume discounts, mutually exclusive or 

inclusive options, and we have absolutely perfect knowledge a priori of the exact 

consequences of any action we might choose. 

Using methods ranging from a simple myopic heuristic to formal optimization, 

despite all these assumptions and limitations, we can deliver useful, real-world solutions 

of known quality.  This simple model is a valuable decision-support tool. 

In the real world of capital planning, there are important embellishments beyond 

the textbook binary knapsack problem.  In particular, we frequently must decide whether 

or not to buy any of a weapon system, and then decide how many of the system to buy.  

We may also have several acquisition options available for procuring a weapon system.  

For this generalization, we present a bounded integer knapsack model,  

e.g., Bertsimas and Tsitsiklis [1997] Chapter 6, with one “measure of effectiveness” 

(MOE).  For guidance on developing MOEs and on scoring a system's contribution 

towards an MOE see, for example, Keeney [1992] and the application by  

Parnell et al. [1998].  Loerch [1999] presents a linear integer program for the instance in 

which contribution (or cost) decreases nonlinearly as the integer quantity of the system 

procured increases.  (Phenomena like this arise from quantity discounts, learning curves, 

and diminishing returns.)  We can capture this nonlinear contribution (or cost) with a 

piecewise linear function by using binary selection variables, each of which assumes 

either a value of one, if the acquisition option is chosen at the associated quantity, or  

zero otherwise. 

An embellished knapsack model is defined as follows: 

Indices and index sets: 

.option n acquisitiounder  procured system(s) weapon ofset   
system, weapon  

option,n acquisitio 

aw(a)
w
a

=
=
=
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Parameters [units]: 
 ( )  lower (upper) limit on quantity of weapon system ( ) available for purchase under

                        acquisition option a [ units],
 the fixed contribution of acquisition 

aw aw

a

l u w w a
w

fixedcontr

= ∈

= option  toward the MOE [value units],
 the variable contribution per unit of weapon system ( ) [value units/ unit],
 the fixed cost incurred by selecting acquisition option  [$

aw

a

a
varcontr w w a w
fixedcost a

= ∈
= ],
 the variable cost per unit of weapon system ( ) purchased under acquisition 

                        option [$/ unit],
 the available budget [$].

awvarcost w w a
a w

budget

= ∈

=
 

Decision Variables: 
  1 if any units are purchased under acquisition option ,  0 otherwise [binary],

  the number of units of weapon system ( ) purchased under acquisition 
                         

a

aw

SELECT a
QUANTITY w w a

= =
= ∈
  option  [ units].a w

 
The corresponding linear integer program is: 

( )

( )

,
maximize

s.t. 

      ,  , ( )
         

a a aw awSELECT a w w aQUANTITY

a a aw aw
a w w a

aw a aw aw a

fixedcontr SELECT varcontr QUANTITY

fixedcost SELECT varcost QUANTITY budget

l SELECT QUANTITY u SELECT a w w a

∈

∈

 
+  

 

 
+ ≤  

 
≤ ≤ ∀ ∈

∑ ∑

∑ ∑

{ }
{ }

                  0,1   

                           0,1, 2, ,  ,  ( ).
a

aw aw

SELECT a

QUANTITY u a w w a

∈ ∀

∈ ∀ ∈L

 

 
Restating the effect of the above, either SELECTa = 0 and QUANTITYaw = 0 for all 

w in w(a), or SELECTa = 1 and law ≤ QUANTITYaw ≤ uaw for all  w in w(a).  If purchase 

quantities are sufficiently high, we can reasonably relax the integrality requirement on 

QUANTITYaw.  For example, Salmeron, Brown, Dell, and Rowe [2002] use integer 

quantities of Navy ships (for about three ships per year), but continuous Navy aircraft 

quantities (for about 100 aircraft per year).  For simplicity, we assume hereafter that 

continuous quantities will suffice. 

Expenditure for military assets is often restricted to a specific funding category, or 

“color of money” (Figure 3).  Each category derives from the appropriation  

Total Obligation Authority (TOA) from which the funds come.  For example, Navy 

money for aircraft is categorized as “Air Procurement, Navy,” and ship money is called 
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“Shipbuilding and Conversion, Navy.”  Each category of money is associated with its 

own restrictions such as the time by which, and the way in which, the money must be 

spent; additional restrictions may include the rate at which, and the assets on which, the 

money can be spent.  We account for these categories by adding an index for funding 

category c, and modify our budget constraint slightly: 

( )
cbudgetQUANTITYtcosvarSELECTtcosfixed c

a aww
awacwaac ∀≤










+∑ ∑

∈
  .

Even with these multiple budget constraints, heuristics such as Senju and  

Toyoda [1968] can be generalized to work quickly as long as the contributions and costs 

can be expressed with a common sign.  In general, we still prefer to optimize with linear 

integer programming when we can afford the computational delay. 
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Figure 3:  The U.S. Department of the Navy TOA (a grand total spending limit) extracted from 
the Defense Department’s future years defense program (FYDP:  the multiyear spending plan) as 
of the January 2003 submission of the president’s budget for fiscal year 2004.  Shown are fiscal 
year accounts in constant 2003 billions of dollars and five earmarked colors of money (APN is 
Aircraft Procurement, Navy, MPN is Military Personnel, Navy, OMN is Operation and 
Maintenance, Navy, SCN is Shipbuilding and Conversion, Navy, and “other” represents an 
aggregation of 20 additional categories).  In capital-planning parlance, fiscal year 2003 is the 
current year, 2004 and 2005 are budget years, 2006 and beyond are out years.  In this case, the 
2004 Department of Navy spending is as submitted for congressional approval following reviews 
by the Office of the Secretary of Defense and Office of Management and Budget. 
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3.2 Interactions Among Decisions 

Some acquisition options may require, or preclude, others.  For example, there 

may be 10 acquisition options for a new tank (weapon system) and, at most, one may be 

selected.  Newman et al. [2000] give examples such as a satellite, which, if funded, 

requires a capable launch vehicle.  The acquisition options governing the satellite and a 

capable launch vehicle are otherwise completely independent. 

We define a “coercion set” as a group of acquisition options that are involved in 

some restriction associated with the selection of each of them. 

Common coercion sets include: 

• “select at most, exactly, or at least k of these acquisition options”; 

• “this acquisition option must be selected to enable any option in that set to be 

selectable”; and 

• “if any acquisition option in this set is selected, then at least one in that set 

must be selected.” 

These coercions arise, for example, to “keep a shipyard open,” “maintain 

redundant sources,” “exercise a contract option,” or “limit the number of  

simultaneous selections.” 

The effects of weapon system contributions are varied and often interact.  Given 

weapon system w procured under acquisition option a, and weapon system  procured 

under acquisition option a', we can model pairwise interactions that do not depend on the 

quantity procured.  We use an additional binary variable 

w′

aaBOTH ′  that has value one 

when both a and a' are purchased, along with the following linear constraints: 

.SELECTSELECTBOTH
SELECTBOTH
SELECTBOTH

'aa'aa

'a'aa

a'aa

1−+≥
≤
≤

 

 
3.3 Multiple-Year Planning Horizon 

Most capital planning for major weapon systems extends over the likely lifetime 

of the systems, but no further than we are willing to risk forecasting the future.  When 

considering a planning horizon as long as 20 or 30 years, we usually keep track of the 

year in which a weapon system starts service (start year) and perhaps the year in which it 

stops service (stop year).  The former time period can correspond to the acquisition 
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decision year, payment year, and/or the first service year.  For ease of exposition, we 

assume that these years coincide, although reality is more complicated, and we show later 

that time lags usually separate these events.  We also track the weapon systems in 

inventory (adding new purchases and deducting retirements of old weapon systems) and 

we can account for operating costs that vary with the service life, or age, of each system.  

An acquisition option a is endowed with a specific start and stop year, as well as 

minimum and maximum yearly purchase quantities, for its associated weapon system(s).  

For multiple-year planning, converting costs to some base present value year is an 

inestimable convenience.  For military planning, several discount rates are published, 

e.g., Naval Center for Cost Analysis [2002]. 

This gives rise to a generic multiple-year model: 

Indices and Index Sets: 
 acquisition option,
 color of money,

  weapon system,
 year, alias ,

  set of weapon system(s) procured under acquisition option .

a
c
w
y y

w(a) a

=
=

=
=

=

 

 
Parameters [units]: 

 ( )  lower (upper) limit on quantity of weapon system ( )  purchased in year  under

                        acquisition option a [ units],
 the fixed contribution of weapon sys

awy awy

awy

l u w w a y

w
fixedcontr

= ∈

= tem ( ) toward the MOE

                           [value units]  in year  under acquisition option ,
 the variable contribution per unit purchased of weapon system ( ) toward the MOE

 
awy

w w a

y a
varcontr w w a

∈

= ∈

                           in year  under acquisition option   [value units/ unit],
 the fixed cost in color of money  in year  incurred by selecting acquisition option  [$],acy

ac

y a w
fixedcost c y a

varcost

=

 the variable cost in color of money  per unit of weapon system ( ) purchased under 
                          acquisition option   in year  [$/ unit],

 the available budget in year  

wy

cy

c w w a
a y w

budget y

= ∈

= in color of money [$].c
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Decision Variables:  
  1 if any units are purchased under acquisition option ,  0 otherwise [binary],

  the number of units of weapon system ( ) purchased under acquisition 

                        

a

awy

SELECT a
QUANTITY w w a

= =
= ∈

   option  that begin operation at the end of year  [ units],
 the number of units of weapon system   in service during year  that

                           first served at the end of ye
wy y

a y w
SERVICE w y=

ar  [ units],

 the number of units of weapon system  taken out of service at the end of year  that

                           first served at the end of year  [ units].
wy y

y w

RETIRE w y

y w

=

 

The corresponding integer linear program is: 
( )

( )

( )

, , , ,, 

maximize

s.t.  ,

      

awy a awy awySELECT QUANTITY a y w w aSERVICE RETIRE

acy a acwy awy cy
a w w a

awy a awy a

fixedcontr SELECT varcontr QUANTITY

 fixedcost SELECT varcost QUANTITY budget c y

l SELECT QUANTITY u

∈

∈

+

 
+ ≤  

 
≤ ≤

∑

∑ ∑

( )

∀

{ }

, 1,
|

, 1,

,  , ( ),

 ,

 , ,

                           0,1   
                           0 ,  ( ),

wy a

awy w y y
a w w a

wy y w y y wy y

a

awy

SELECT a w w a y

QUANTITY SERVICE w y

SERVICE SERVICE RETIRE w y y y

SELECT a
QUANTITY a w w a y

+
∈

+

∀ ∈

= ∀

= + ∀ <

∈ ∀

≥ ∀ ∈

∑

                           0  , ,

                           0  , , .
wy y

wy y

SERVICE w y y

RETIRE w y y

≥ ∀

≥ ∀

 

 
When we select an acquisition option a, it may inflict fixed and variable costs 

over many years.  The generalized fixedcostacy and varcostacwy parameters allow us to 

schedule both the fixed and variable costs for each acquisition option annually and make 

them payable over many years before and after the weapon system begins service.  These 

cost parameters allow a fixed lag between the time a system is paid for and the time it 

begins service. 

Costs, such as operating and maintenance costs, may vary by planning year and 

also by the age of the system.  To this end, we can define varcostacwyy as the variable cost 

in color of money c during year y for a weapon system w under acquisition option a given 

that the system is y - y years old.  SERVICEwyy is the number of units in service during 

year y that are y - y years old. 
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Figure 4:  To track the age of an asset we must account for both its introduction (cohort) year 
y and its service year; each cohort is a unique commodity, and we need conservation-of-flow 

constraints that retain this distinction.  Some service-life-extension actions can overhaul an old 
asset to create a new one.  Inventory ageing is an essential complication when, for example, 
maintenance cost varies by age, or if the asset has a maximum planned service life; this can 
dramatically increase the size of long-term capital planning models. 

 

Similarly, we may need to force overhaul and retirement decisions by 

constraining maximum service life or some burdened function of service life and  

usage rate. 

Aged inventory is always an issue, so it is curious that textbooks rarely mention it. 

We can relax the budget constraint in the above formulation by accumulating both 

expenditures and the budget allowance up to any current period to produce the following 

set of cumulative constraints: 

' ' '
' ( ) '

 c,y.acy a acwy awy cy
a y y w w a y y

fixedcost SELECT varcost QUANTITY budget
≤ ∈ ≤

 
+ ≤ 

 
∑ ∑ ∑ ∑ ' ∀
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In this way, we can retain unused funds from one year to pay for an acquisition in a 

subsequent year with greater benefit.  In reality, we may not be able to apply past funds 

to future years: many budgets are granted on a use-or-lose basis.  However, by using a 

model to forecast when we need funds, we may be able to request a priori a distribution 

of funds to match the optimal requirement. 

 

3.4 Time Dependencies Among Decisions 

Operational considerations give rise to coercion sets that ensure continuity of 

mission availability between time periods, in addition to pairwise interactions that can be 

applied to one or more time periods.  For example (Figure 5) a coercion subset may be 

used to denote a weapon system w (or collection of weapon systems), with its 

corresponding start- and stop-service years, y  and y , whose operation is dependent 

upon another weapon system w', with its own corresponding start- and stop-years,  

y′  and y′ . 
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B2 operates

B1 operates
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Concurrent dependence:
system B1 may operate 
only while system A 
operates.

A operates

A operates
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Prerequisite dependence: 
system B2 may start 
no earlier than system A 
starts.

Contiguous dependence:
system B3 must start 
when system A 
ends.

…

…

yy

Figure 5:  When we begin operating a new system can depend on the timing of the other 
systems’ operations.  System A starts operating at the end of year y  and stops at the end of .y   
The concurrent dependence of candidate system B1 on A restricts it to operating only when A 
does.  The prerequisite dependence of B2 on A prevents it from starting before A does.  The 
contiguous dependence of B3 on A requires it to start operating right after A ceases operation. 

Some weapon systems must be procured so that their service years are 

synchronized in some way with those of other weapon systems.  Weapon system w, 

procured under acquisition option a, may be required to operate concurrently with 

weapon system  procured under acquisition option w′ a′ , provided '.yy'yy ≥∧≤   We 

term this “concurrent operation,” and impose the constraint: 

.CTSELESELECT a'a ≤  

Weapon system w, procured under one of the acquisition options , may be 

required to operate prior to weapon system 

Ω∈a

w′  procured under acquisition option a′ , 

provided 'yy ≤ .  We term this “prerequisite operation,” and impose the constraint: 

.CTSELESELECT
a

a'a ∑
Ω∈

≤  
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Weapon system w, procured under exactly one of the acquisition options Ω∈a , 

may be required to operate immediately after weapon system  procured under 

acquisition option a , provided 

w′

′ .y'y 1+=   We term this “contiguous operation,” and 

impose the constraint: 

.CTSELESELECT
a

a'a ∑
Ω∈

=  

 

3.5 Mechanisms to Regulate Long-term Capital Plans 

We have shown how budgets may be specified in funding categories and  

fiscal years.  Funding categories may be yearly and strictly partitioned, e.g., Field [1999], 

while other funding restrictions may span some multiple-year epoch, e.g., space systems 

funding allocated to five-year epochs [Newman et al. 2000].  Some funding categories 

are fungible with others, resulting in planning models with some amalgam of separate 

categories and blended funds.  For example, Brown, Clemence, Teufert, and  

Wood [1991] mingle Army helicopter construction costs and a host of ancillary expenses.  

Each military service has its own signature planning regimen.  Builder [1987] lampoons 

these distinctions with painful accuracy, great humor, and good taste. 

Because the costs of selecting acquisition options relative to budgeted funding 

categories are high, it can be very difficult to select a portfolio such that the resulting 

annual outlays fit exactly in each funding category in each planning year of the horizon.  

In other words, a superficially simple annual budget constraint over a long planning 

horizon is ridiculous in the real world. 

To address this recurring problem, some planning models employ a budget band 

over the planning horizon, with yearly lower and upper bounds on each funding category 

in the short term, and larger bands farther into the future to reflect planning uncertainties.  

The use of these bands provides some reasonable degree of freedom as to when funds are 

spent, even if the total amount spent does not change. 

Even with budget bands, we can encounter an optimal solution that is silly, such 

as leaving a large amount of money unused in some category and year, even though with 

just a few dollars more we could select an attractive alternative.  To avoid such 

foolishness, we create an elastic constraint on the budget.  Rather than overlook some 
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solution that is almost, but not quite, feasible, we allow a budget band to be violated, 

albeit at a high elastic penalty cost per unit of violation.  An insightful solution with 

small, cosmetic elastic violations is much better received by planners than a strictly 

feasible solution that nobody likes. 

With elastic yearly budget bands, we can still encounter an optimal solution with 

myopic elastic violations over the planning years:  violations that, after some analysis, 

can be shifted sooner and/or later to reduce their number and/or severity.  To capture this 

in the optimization model, we employ cumulative elastic constraints, where each  

(e.g., upper) limit each year is replaced by the sum of all such limits from the first year, 

up to and including that year.  Here, an elastic violation in any year keeps reappearing in 

later years, unless it is offset by some compensating later event. 

After a plan has been refined, and, perhaps, promulgated to senior leadership, 

changes can arise that necessitate revision of this legacy.  Optimization has a well-earned 

reputation for amplifying small changes to input parameters into breathtaking changes to 

output plans.  Often, disruptive changes turn out to be unnecessary, exhibiting total costs 

varying insignificantly from the legacy plan.  Brown, Dell, and Wood [1997] show how 

to incorporate persistence in optimization-based decision support models. 

For example, suppose we have a binary legacy solution SELECTa* against which 

we would like to compare the solution SELECTa.  The linear expression: 

∑∑
==

−+
10

1
*SELECT|a

a
*SELECT|a

a
aa

)SELECT(SELECT  

sums the number of revisions (the “Hamming distance”) between the legacy solution and 

the revision, which can be constrained and/or elastically penalized.  Restricting the 

differences between the two solutions, i.e., providing an upper bound on the expression 

above, will not reduce costs, but frequently reveals alternate solutions that cost little more 

and exhibit much less turbulence. 

Additionally, we can use a simplifying restriction of Hamming distance to 

generate a family of high-quality solutions as follows.  Find an optimal plan.  Report it, 

and then add a constraint to preclude just this plan in its entirety, or as a subset, e.g., 

*

| * 1

1
a

a a
a SELECT a

SELECT SELECT
=

 ≤ − 
 

∑ ∑ . 
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Find another optimal plan, report it, similarly restrict it from further consideration,  

and continue. 

Given that these planning problems can be large linear integer programs, each of 

which is difficult to solve at all, let alone exactly, we assume that some interval of 

uncertainty, or integrality tolerance, will reasonably apply.  If, e.g., each plan is  

“within 5 percent of optimality,” then the successively-restricted plans will not 

necessarily exhibit monotonically nondecreasing costs. 

Long-term capital planning models have finite planning horizons.  Beginning and 

ending states are required as input parameters.  When the purpose of long-term planning 

is to advise how to evolve, it seems paradoxical that the end state must be specified as an 

input, rather than learned as an output.  Worse, the end state is a long time from now and 

not easy to reckon.  Errors and omissions in determining end states can lead to  

end effects:  outrageous behavior at the end of the planning horizon. 

End effects can arise from simple causes.  For instance, an innocent requirement 

that “no purchased alternative can be retired before it has been in service 10 years,” 

combined with the requirement that “every purchased alternative must be retired before 

the end of the planning horizon” can preclude any procurement in the last planning 

decade.  Often, the causes of end effects are much more subtle, and thus the magnitude 

and duration of their impact can be exceedingly difficult to gauge.  Although the end 

effects problem has been examined theoretically, e.g., Walker [1995], results to date are 

limited to special cases.  The key, theoretically or heuristically, is to induce end states 

that do not unduly coerce the results that lead there. 

Common sense prevails when addressing end effects.  One way to mitigate  

end effects is to extend the planning horizon beyond those years actually reported.  

(Many of our references do this.)  The problem here (both theoretical and practical) is to 

determine just how long the time horizon should be extended.  In the trivial case above, at 

least a decade extension is advisable. 

In any real-world, long-term planning model, there are allowances for bad events; 

unavoidable despite optimization.  Given a choice, we prefer to delay such bad news as 

long as possible into the future by discounting the penalty for such an event at a higher 
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rate than its companion costs in the model.  We call this the “fog of far-future planning 

factor,” or the model mischief discount rate. 

 

3.6 When Objectives are Constraints, and Vice Versa:  Dealing With Multiple, 

Conflicting Measures of Effectiveness 

Military capital planning models naturally attract guidance from senior leadership.  

Respecting the source of such advice, it is natural to want to add constraints restricting 

the model to follow such guidance verbatim.  However, expert opinions can be 

inconsistent between sources, and the intersection of all the guidance provided almost 

certainly renders a model infeasible, offering a mathematical example of the old adage 

“you can’t please everyone.” 

A classic method for simultaneously addressing multiple objectives is simple, but 

often does not produce a globally-accepted solution:  use some weighted-average of all 

objectives (e.g., Steuer [1986], Chapter 7).  This weighted-average objective must have 

some supernumerary units, requiring that we somehow equilibrate “apples plus oranges 

plus grenades plus . . .” 

A weighted average can be used to try to coerce hierarchy among component 

objectives; assuming, of course, that we can establish such a well-ordered hierarchy.  

However, this is problematic even for just two objective components, if not complete 

adhocery.  Textbook descriptions of the “Big-M” multiplier method to achieve a feasible 

solution suffice to illustrate.  Just how big does “Big-M,” the objective weight per unit of 

constraint infeasibility, have to be to guarantee a hierarchical distinction?  Our military 

world record is a model sent to us with 14 hierarchical objectives:  even if each objective 

is given a weight just one order of magnitude higher than the next lower objective, the 

resulting weighted-average objective exceeds the mantissa length of an IEEE 80-bit 

floating point number, so (even without a course in numerical analysis) one can see that 

this objective is inflicted with worrisome, if not overwhelming, rounding-error noise. 

We can achieve purely hierarchical solutions without weighted averages  

(e.g., Steuer [1986], Chapter 9).  First, optimize only with the highest-order objective, 

and then write an aspiration constraint requiring at least the resulting optimal value of 

this objective function.  Add the aspiration constraint to the existing set of constraints and 
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reoptimize, this time with the second-highest order objective.  Repeat this with each 

successive lower-level objective. 

Pursuing strict hierarchies among conflicting objectives and/or conflicted 

guidance can obscure good trade-offs.  This leads us to relax our aspiration constraint for 

each objective to an elastic aspiration constraint, where we express some goal level of 

achievement and, as before, allow violation with a linear elastic penalty. 

Sometimes, we are only given a list of MOEs, and it is left to us to determine 

what the aspiration levels should be.  This leads to a series of optimization problems in 

which each requirement may take its turn in the objective, while its cohorts play the role 

of elastic aspiration constraints.  That is, we are empirically discovering MOE levels that 

admit efficient solutions.  A common heuristic is to cycle through the MOEs in some 

priority order, finding the extremal (i.e., maximizing or minimizing) value of each, 

setting some fraction of this as its aspiration, and continuing to the next MOE. 

 

4. Computational Examples and Guidance 
Military capital planning problems typically address numerous assets,  

(e.g., weapon systems, munitions, platforms, and vehicles), many years in the planning 

horizon, and many acquisition options—limited only by the imagination of procurement 

planners and the responsiveness of competing contractors.  As a result,  

optimization-based decision support models of military capital planning problems are 

large and complex, typically resulting in many thousands of discrete and continuous 

variables and thousands of constraints.  Not all such models can be solved quickly.  In 

fact, a model is tractable only if it can be relied on to render a useful answer while we 

still remember the question.  But, important problems deserve serious analysis.  We 

military analysts have lots of computing power.  The authors think nothing of solving 

hundreds, or thousands, of planning scenarios.  When the objective is billions of taxpayer 

dollars and the result is a durable decision to invest in the future defense of our country, 

analysis is everything. 

We present a few tricks that usually make large models easier to solve.  To 

motivate, the next two paragraphs each report an anecdotal application and evidence of 

where we hope to be when we finish crafting, tuning, and tweaking. 
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The Air Force uses a capital-planning model [Newman et al. 2000] that features 

about 10,000 variables and about 17,000 constraints; between 2% and 10% of the 

decision variables are required to be binary.  Answers within 2% of optimality are 

produced in about three minutes on a Silicon Graphics ONYX2 workstation with  

4 gigabytes of RAM using the CPLEX solver, Version 6.5 [ILOG 2002]. 

A capital-planning model designed for the Navy to plan the procurement of  

Naval ships and aircraft for the next 25 years [e.g., Garcia 2001] has about  

167,000 variables (about 6,000 binary), and about 114,000 constraints.  Heuristic 

solutions are generated in a second or two, and solutions within 10% of optimality are 

produced in about seven minutes on a 1GHz Pentium III computer with 1 gigabyte of 

RAM using the CPLEX Solver, Version 6.5. 

 

4.1 Time Discount Rate and Model Mischief Discount Rate 

We use present value for all costs, but we also use a model mischief discount rate 

to attenuate the influence of far-future constraints when these constraints cause trouble.  

This reflects planning reality, and can also help the optimization algorithm distinguish 

between admissible solutions. 

Discount rates help Newman et al. [2000] with capital-planning for the  

Air Force Space Command.  Base-case, nondiscounted model instances require about 1½ 

hours to solve to an optimality gap of 10%.  However, applying a 2.5% annual discount 

factor reduces solution times for these same instances to between 6 minutes and 1 hour to 

solve to the same 10% optimality gap.  Analysis of the discounted model solutions 

reveals no degradation in solution quality. 

Salmeron, Brown, Dell, and Rowe [2002] express all naval procurement, 

operation and maintenance costs in constant-year dollars, but add an extra “inflation” 

factor to realistically represent operation and maintenance costs for older aircraft.  The 

decrease in solution effort here proves so dramatic that nondiscounted base cases are not 

attempted.  These authors also allow violations of cumulative budget bands, and use a 

model mischief discount rate to move any such violations as far as possible into the 

future.  This proves worthwhile, because their model also exhibits end effects.   

For example, near the end of the long planning horizon, ships are forced to retire without 
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alternate replacements on the drawing boards.  Here, it is better to deliver workable 

advice with excellent near-term fidelity than to let this far-term blemish shatter the entire 

planning exercise. 

 

4.2 Relaxation and Aggregation 

A decision to select an acquisition option in a particular year may have to be 

binary in the near term, but not in the far term.  Integer acquisition quantities are 

required, especially in the near term, if the magnitudes are small, but we frequently relax 

integer decision requirements in the intermediate and far terms, which can have a 

dramatic effect on model performance. 

For example, we might replace binary alternatives to select some acquisition 

option in exactly one out of a set of future years with a relaxation that permits the 

alternative to be fractionally selected during that epoch, but fully selected by the end of it.  

This permits planned investments to be spread over years in the future,  

e.g., Newman et al. [2000], rather than forcing the investments to be made in some 

particular year.  Salmeron, Brown, Dell, and Rowe [2002] use continuous quantities for 

aircraft and all retirements, and these account for the vast majority of the nearly  

100,000 decision variables.  Some ship quantities may be continuous in the far future, 

permitting planned construction to span planning years. 

These relaxations are not always easy to express, say, when there are interactions 

among far-term decisions.  Aggregation can help limit model sizes and hasten planning 

cycles, while reducing the workload of preparing parameters for far-future alternatives.  

In the near term, we might want a diversity of alternatives, while in the far term, we 

might just have one alternative to select, or reject.  In the near term, we might need yearly 

time fidelity, while in the far term, we can aggregate yearly constraints and variables to 

model an entire decade, reflecting the reality that timing selections in the out-years are 

less precise.  When the planning horizon rolls forward, all model features will eventually 

be disaggregated and amplified to then-present value. 
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4.3 Strong Formulation 

Recall the coercion “this option must be selected to enable any option in that set 

to be selectable.”  If we refer to “this option” as the controlling binary variable 

, and to “that set” as the controlled variables in the set , this may be 

formulated as a single linear constraint: 

aSELECT ′ Ω

.a a
a

SELECT SELECT ′
∈Ω

≤ Ω∑  

Alternately, we can use Ω linear constraints: 

.a aSELECT SELECT a′≤ ∀ ∈ Ω  

Even though this latter constraint set is superficially equivalent to the former 

constraint for binary selections, the latter set is much stronger than the former for 

continuous relaxations of selections (e.g., Rardin [1998], Chapter 12), and thus a much 

better guide for enumeration.  There are many more examples of alternate formulations of 

particular model features, but the principles are the same:  try to tighten the continuous 

relaxation as much as possible, without encumbering the model with an overwhelming 

number of constraints. 

 

4.4 Setting Elastic Penalties 

The manager’s principle says “only pay attention to taut constraints, and only 

worry about critical resources.”  This is an a posteriori policy:  first, produce a plan; then 

see what trouble you need to attend to.  Elastic constraints generalize this concept to say, 

a priori, “if you violate this constraint, here is how much it will cost, per unit violated.”  

Using elastic constraints allows any plan you produce to follow your advice on when and 

how to violate constraints. 

Elastic penalties are useful, but setting them deserves some care and analysis.  If 

violations arise (and in military capital planning models, violations are inevitable) the 

objective function expresses the impact of these violations, and the resulting planning 

solution will be influenced.  Each elastic penalty is a bound on the linear program dual 

variable of its constraint.  If you set penalties reasonably, you will be rewarded with a 

tractable model and plans that have followed your considered advice.  If you set penalties 

carelessly, you will end up wishing you hadn't used elastic constraints at all. 
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5. Conclusion 
The military has employed mathematical optimization of capital planning for over 

50 years and has made many contributions to this field.  Planning capital outlays for the 

military is different than for the private sector, principally in the sheer amounts of money 

involved, the nature of the procurement costs, and additional requirements and 

regulations imposed on military capital expenditures.  This report distills many recurrent 

planning issues and shows how they can be expressed in a mathematical model.  Many of 

these ideas are not contained in any textbook and we recommend the references in our 

bibliography for more detail. 
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